If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+10x+45=0
a = -4.9; b = 10; c = +45;
Δ = b2-4ac
Δ = 102-4·(-4.9)·45
Δ = 982
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{982}=\sqrt{1*982}=\sqrt{1}*\sqrt{982}=1\sqrt{982}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-1\sqrt{982}}{2*-4.9}=\frac{-10-1\sqrt{982}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+1\sqrt{982}}{2*-4.9}=\frac{-10+1\sqrt{982}}{-9.8} $
| -13x+39=0 | | -3y+-8y+9y=20 | | 35x+18(150-x)=x | | 9+3b+8=8+3b+9 | | 2.9×x=-6.04 | | 18+8t=9(t=2) | | 3x−5(3−2x)=6x−15 | | (5g−20)(−2g+8)=0 | | 5/2x+14=30 | | 2d+3=5d−6 | | 52 x+14=30 | | 3=−2c+4 | | 7x-45=25-3x | | 0,333b=4 | | 13b=4 | | g^2-12g-49=0 | | 6p+4p-2p-6p+2p=16 | | (x^2+1)(x^2-1)=0 | | -35+5=(x/11) | | 2n-4+3n=14-4n | | M+(m+1)+(m+2)=69 | | 25m-13=27m-37 | | 15v+4v=-19 | | -16-(-15)=(x/8) | | A-(AxB)-C=D | | (x+1)^2(x-1)^2=0 | | 3y/4-5=y/2+1 | | 8d-6=58 | | 20d-16d+d+d=12 | | y/4+9=11 | | 36=18-3a | | 4j+2j+j=7 |